http://lenta.ru/articles/2014/10/15/xfel2/ Лазер в три километра Россия с европейскими партнерами продолжает создавать самый мощный в мире разер Тоннелепроходческая машина, используемая при прокладке ускорителя для лазера В начале октября в Московском физико-техническом институте прошел круглый стол, посвященный строительству XFEL — самого крупного в мире рентгеновского лазера (разера) на свободных электронах. Общая стоимость установки достигает 1,2 миллиарда евро. Доля финансового участия России в международной программе — 27 процентов. С российской стороны проект курирует «Курчатовский институт». «Лента.ру» посетила пресс-конференцию, проведенную после круглого стола по XFEL, и узнала, как этот лазер устроен. XFEL (X-ray Free Electron Laser — рентгеновский лазер на свободных электронах) — международная программа по созданию крупнейшей в мире установки для наблюдения за ходом химических реакций. По словам участников проекта, XFEL позволит проследить за сложными биохимическими процессами в клетках и приведет к быстрому прогрессу в понимании механизмов ряда заболеваний, например болезни Паркинсона. Фактически новый лазер представляет собой уникальный инструмент, позволяющий в режиме онлайн следить за изменениями в трехмерной структуре крупных биомолекул. Всего в строительстве XFEL занято около 250 человек из 12 стран-участниц проекта. Начатые в 2009-м работы планируется завершить в следующем году. Еще через год рентгеновский лазер будет полностью готов к первым экспериментам. Самая крупная доля финансового участия у Германии — 58 процентов. На втором месте — Россия. Вклад остальных стран — Дании, Франции, Греции, Венгрии, Италии, Польши, Словакии, Испании, Швеции и Швейцарии — в диапазоне от одного до трех процентов. Квоты на использование лазера определяются пропорционально финансированию. Однако, по словам ученых, заявки на проведение наблюдений могут подавать все желающие. Решение о возможности тех или иных экспериментов будут принимать эксперты, руководствуясь актуальностью конкретных научных задач. Общая длина туннеля лазера — 3,4 километра. Туннель начинается от самого крупного в Германии центра физики частиц DESY (Deutsches Elektronen-Synchrotron — Немецкий электронный синхротрон), расположенного в Гамбурге, и доходит до границы города Шенефельд земли Шлезвиг-Гольштейн. Вся система туннелей лазера расположена под землей на глубине от шести до 38 метров. Для разгона электронов будет использоваться сверхпроводящий линейный ускоритель общей протяженностью 2,1 километра с расчетной энергией от 17,5 до 20 гигаэлектронвольт. По всей длине разгонной части ускорителя, равной 1,7 километра, установят 101 модуль, состоящий из специальных сверхпроводящих камер. Визуализация подземных туннелей XFEL Частицы, поступающие в ускоритель, выбиваются из металла при помощи специального лазера. Источник излучения должен удовлетворять специфическим условиям, так как самые незначительные отклонения в первоначальном движении электронов могут привести к получению на выходе пучка недостаточно высокого качества. Сверхпроводящий ускорительный элемент из ниобия На первых 1,7 километра электроны будут ускоряться в специальных резонаторах, в которых разгон частиц осуществляется при помощи микроволнового излучения до скоростей, сравнимых со скоростью света. Сами резонаторы изготовлены из материала с ниобием, переходящим в сверхпроводящее состояние при охлаждении до температуры минус 271 градус Цельсия. Это позволяет почти без потерь расходовать электрическую энергию на ускорение частиц и формировать достаточно тонкий пучок электронов. В качестве охладителя планируется использовать жидкий гелий. Принципиальная схема работы лазера на свободных электронах Электроны проходят через магниты ондулятора, в результате чего происходит генерация когерентного синхротронного излучения. Его фокусировка происходит в электронной ловушке и луч лазера направляется на мишень. Ускоренные электроны двигаются в так называемых ондуляторах (некоторые технологические решения для которых предложили ученые из Института ядерной физики СО РАН в Новосибирске) — системы магнитов, заставляющей заряженные частицы излучать рентгеновские кванты со все большей интенсивностью. Скорость фотонов выше скорости электронов — распространение излучения опережает электроны, и последние, попадая в поле излучения первых, формируют в полости ондулятора конфигурацию из множества тонких дисков. Главная особенность такой системы — синхронное излучение, образующее короткие и интенсивные рентгеновские вспышки со свойствами лазерного пучка. Формирование электронных дисков и излучения от них составляет содержание так называемой самоусиливающейся спонтанной эмиссии. Для получения качественных пучков на XFEL планируется использовать ондуляторы длиной более ста метров. В зависимости от потребностей эксперимента, параметры лазера XFEL могут настраиваться с помощью различных оптических инструментов, таких как, например, зеркала, решетки, щели или преломляющие кристаллы. Эти элементы устанавливаются в базовые станции на выходе пучка и взаимодействуют с ним. Данные такого взаимодействия фиксируются датчиками и анализируются компьютером. Сами исследователи будут управлять и следить за ходом эксперимента из диспетчерских кабин. Монтаж ондулятора После ускорительной части 3,4-километрового туннеля лазер сможет генерировать около 27 тысяч рентгеновских вспышек с длиной волны от 0,05 до 6 нанометров в секунду и продолжительностью до ста фемтосекунд (менее одной триллионной доли секунды). Это сделает установку самой мощной в мире среди всех рентгеновских лазеров: столь короткие импульсы позволят исследовать трехмерную структуру крупных биомолекул и их взаимодействия с точностью, недоступной ранее. Аналогичные лазеры работают в США и Японии, но их возможности на порядки ниже европейских.
Apple пытается запатентовать дисплей OLED со встроенным сенсорным экраном. В базе данных американского патентного ведомства появилась интересная заявка на патент. Заявка №20150331508, поданная в мае прошлого года, называется «Дисплей кремний-OLED со встроенным сенсорным экраном».
Вакуумные технологии уже мало кого интересуют, человечество давно выбрало полупроводники. Однако о смерти говорить ещё рано — индустрия вакуумной электроники продолжает развиваться. К примеру, музыкальная компания Korg доказывает, что устройства на основе этой технологии по-прежнему имеют право на существование. Вакуумные электронные микросхемы в упаковке DIP поступают в продажу. Лампа Nutube 6P1 по цене в 5400 японских иен (53 доллара) обещает сочетание всех достоинств и вакуума и полупроводника. Новинка сможет прослужить до 30 000 часов, ни одна радиолампа такой «выносливостью» похвастаться не может. Для работы «лампе» нужно всего 10 вольт. Сфера её применения — музыкальная техника, ламповые усилители и прочие инструменты, требующие определенного «лампового» звучания. Производить ламповый чип взялась компания Noritake. Продажи стартуют завтра (месяц назад).